Margin Adaptive Risk Bounds for Classification Trees

نویسنده

  • Servane Gey
چکیده

Margin adaptive risk bounds for Classification and Regression Trees (CART, Breiman et. al. 1984) classifiers are obtained in the binary supervised classification framework. These risk bounds are obtained conditionally on the construction of the maximal deep binary tree and permit to prove that the linear penalty used in the CART pruning algorithm is valid under margin condition. It is also shown that, conditionally on the construction of the maximal tree, the final selection by test sample does not alter dramatically the estimation accuracy of the Bayes classifier. In the two-class classification framework, the risk bounds that are proved, obtained by using penalized model selection, validate the CART algorithm which is used in many data mining applications such as Biology, Medicine or Image Coding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification Algorithms using Adaptive Partitioning

Algorithms for binary classification based on adaptive partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. A general theory is developed to analyze the risk performance of set estimator...

متن کامل

Risk Bounds for Classification Trees under a Margin Condition

Risk bounds for Classification and Regression Trees (CART, Breiman et. al. 1984) classifiers are obtained under a margin condition in the binary supervised classification framework. These risk bounds are obtained conditionally on the construction of the maximal deep binary tree and permit to prove that the linear penalty used in the CART pruning algorithm is valid under a margin condition. It i...

متن کامل

Risk bounds for CART classifiers under a margin condition

Non asymptotic risk bounds for Classification And Regression Trees (CART) classifiers are obtained in the binary supervised classification framework under a margin assumption on the joint distribution of the covariates and the labels. These risk bounds are derived conditionally on the construction of the maximal binary tree and allow to prove that the linear penalty used in the CART pruning alg...

متن کامل

Adaptive Sampling Under Low Noise Conditions

We survey some recent results on efficient margin-based algorithms for adaptive sampling in binary classification tasks. Using the so-called Mammen-Tsybakov low noise condition to parametrize the distribution of covariates, and assuming linear label noise, we state bounds on the convergence rate of the adaptive sampler to the Bayes risk. These bounds show that, excluding logarithmic factors, th...

متن کامل

Optimal oracle inequalities for model selection

Abstract: Model selection is often performed by empirical risk minimization. The quality of selection in a given situation can be assessed by risk bounds, which require assumptions both on the margin and the tails of the losses used. Starting with examples from the 3 basic estimation problems, regression, classification and density estimation, we formulate risk bounds for empirical risk minimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009